If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-20t-24=0
a = 3; b = -20; c = -24;
Δ = b2-4ac
Δ = -202-4·3·(-24)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{43}}{2*3}=\frac{20-4\sqrt{43}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{43}}{2*3}=\frac{20+4\sqrt{43}}{6} $
| 9x-(6x+9)=4x-27 | | 2x^2-24x+216=0 | | X+1/2+x+3/3=7 | | 3/4(2m+5)=1/9m+2 | | $1620=$180x | | y/8.2=3.2 | | (12a^2)-22a-2=0 | | (2x^2+5x-2)^1/2-(2x^2+5x+9)^1/2-1=0 | | X+5/3+x+2/2=2 | | -6n+12-7n+9=n-70 | | 8+9+12+c/4=10 | | -6s-4(-7s-13)=-58 | | (2x2+5x-2)12-(2x2+5x+9)12-1=0 | | -8x-17=-161 | | 3n*n-5=n-6*3n+1 | | (5x-1)-(x+5)=3 | | 4x=1/2(x+3+46) | | 6x-(5x+5)=2x-12 | | 5x+2=93 | | 5/6x-10=2x+4 | | 2(4+5x)=9(-5) | | 15x+54=120 | | 10(3n-2)=5(7) | | 5a+15=8a+18 | | 5.4x+2025=29.16+45x | | 1+8z=9+8z | | 0.75p=0.4p+00 | | x/10.5=6/9 | | -6w+32=2(w-4) | | 5(u-1)=8u+7 | | 2x-14=4(x-1) | | 5x-90=110 |